III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

DATA STRUCTURES AND ALGORITHMS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Code: 20ES1502

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	What is Recursion? What are the advantages	L2	CO1	7 M			
		of Recursion? Explain the types of						
		Recursion.						
	b)	Explain about the asymptotic notations with	L2	CO1	7 M			
		an example for each.						
OR								
2	a)	Write the procedure and the ways to	L2	CO2	7 M			
		implement insertion and deletion of a node						
		in a single linked list.						
	b)	Write and explain deletion operations in	L2	CO2	7 M			
		circular linked list with pictorial						
		representation.						

Max. Marks: 70

		UNIT-II			
3	a)	Using recursive function for fibbonacci series, explain the execution of the function call fibbonacci(7) using stack.	L3	CO2	7 M
	b)	Convert the following infix expression (X + Y) *(P - Q) / R to postfix expression using stack.	L3	CO4	7 M
		OR			
4	a)	Write the procedure to perform Queue ADT.	L3	CO2	7 M
	b)	Give the empty condition and full condition in array implementation of queue.	L3	CO2	7 M
		UNIT-III			
5	a)	Construct Tree from given Inorder and Preorder traversals Inorder sequence: D B E A F C Preorder sequence: A B D E C F	L3	CO4	7 M
	b)	Develop the routines to get Pre-order, Post- order, Inorder in a Binary Search tree.	L2	CO2	7 M
		OR			
6	a)	Define BST and Construct a BST by inserting 30, 10, 4, 19, 62, 35, 28, 73 into an initially empty tree.	L3	CO4	7 M
	b)	Write and explain BFS algorithm with an example.	L2	CO2	7 M

UNIT-IV								
7	a)	Prove that the time complexity of merge	L4	CO5	7 M			
		sort is O(nlogn)			-			
	b)	Explain Quick sort with algorithm.	L2	CO3	7 M			
OR								
8	a)	Illustrate the job sequencing with deadlines	L3	CO3	7 M			
	-	problem with an example. Give the greedy						
		solution.						
	b)	Explain the single source shortest path	L2	CO3	7 M			
		problem with suitable example.						
			I	11				
UNIT-V								
9	a)	What is All Pair Shortest Path problem	L2	CO3	7 M			
		(APSP)? Discuss the APSP algorithm and						
		discuss the analysis of this algorithm.						
	b)	Find the optimal solution for 0/1 knapsack	L3	CO3	7 M			
		problem by using Dynamic Programming						
		approach when $n=4$, $m=15$, (w1,w2,w3,w4)						
		= (10,15,6,9) and (p1,p2,p3,p4)=(2,5,8,1)						
	OR							
10	a)	Solve the Travelling Salesman problem	L3	CO3	7 M			
		using dynamic programming technique.						
	b)	State the advantages and properties of	L2	CO3	7 M			
		dynamic programming strategy.						